

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

Problem	Score
1	Points
2	10
3	10
4	10
5	10
6	10
7	10
8	10
9	10
10	10
11	10
10	10

1. Short answer questions:
(a) Suppose you try distributing

$$
(x+y)^{2} z^{2}=\left(x z^{2}+y z^{2}\right)^{2}
$$

Why is this incorrect?
Because $(x+y)^{2} z^{2}=(x+y)(x+y) z^{2} ;$ you distributed the z^{2} into both factors of $(x+y)$. The distributive law

Says you can only distribute into one foetor of $(x+y)$.
(b) Suppose you cancel out the x 's to simplify

$$
\frac{3+x}{x}=\frac{3+1}{1}=4
$$

Why is this incorrect?
Because x is a term in the context of the numerator. Fraction law \#5 says $\frac{a \cdot c}{b \cdot c}=\frac{a}{b}$; you con only cancel if
C is a factor in the context of the entire numen tor and denominator. (c) You try simplifying by distributing:

$$
\left[(x-1)^{2}+(x+1)\right]^{3}=\left(x-\sqrt{5}-\left(x+1^{\sqrt{3}}\right) x^{(5}-1^{6}+x^{\sqrt[3]{3}}+\sqrt{3}\right)=x^{5}+x^{3}
$$

Circle the two types of mistakes you made and explain why they are mistakes.
In purple:
(1) Distributed the power of 3 to the tom $(x-1)^{2}$
(2) If you had $\left((x-1)^{2}\right)^{3}$, you neal to multiply 2 and 3 not odd them.

In red: Distributed exponent to terms. C on only distribute
2. Evaluate the following:
(a) $\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$

convirt to radions

(c) $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$

Lock for x-ccoudinate of $-\frac{\sqrt{3}}{2}$ in the stioded purple pootion.
(d) $\tan \left(\sin ^{-1}\right.$
$=\frac{\pi}{4}$
ind the shade f
(e) $\sin \left(\frac{5 \pi}{2}\right)$

walk unc cirele then a quouter

$$
\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{5 \pi}}{\frac{6}{5}}
$$

$\tan \left(\sin ^{-1} \frac{\sqrt{2}}{2}\right)=\tan \left(\frac{\pi}{4}\right)$ to walk to that poinc.

$$
\begin{aligned}
& =\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} \\
& =\square
\end{aligned}
$$

(e)

$$
\text { (f) } \sin 75^{\circ}=\sin \left(30^{\circ}+45^{\circ}\right)
$$

$30^{\circ} \cdot \frac{\pi}{1800}=\frac{\pi}{6}$

$$
=\sin \left(\frac{\pi}{6}+\frac{\pi}{4}\right)
$$

$45^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{\pi}{4}$
addifica
formula

$$
\begin{aligned}
\stackrel{\operatorname{licn}}{=} \sin \left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}\right) & =\frac{1}{2} \cdot \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4}=\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

3. Given the function

$$
\begin{gathered}
\begin{array}{c}
\text { not coefficient of } 1 \\
\downarrow
\end{array}(x)=1+\cos (2 x-2 \pi)=1+\cos (2(x-\pi))
\end{gathered}
$$

(a) Graph one period of $f(x)$ using transformations.

Base function $g(x)=\cos (x)$

$$
\begin{aligned}
& h(x)=g(2 x)=\cos (2 x) \\
& k(x)=h(x-\pi)=\cos (2(x-\pi)) \\
& f(x)=1+k(x)=1+\cos (2(x-\pi))
\end{aligned}
$$

$$
\text { horizontal shrink } \frac{1}{2}
$$

$$
\text { horizontal shift } \pi \text { units to the right }
$$

vertical shift up 1 unit.

(b) What is $f(\pi)$?

$$
\begin{aligned}
f(\pi) & =1+\cos (2 \pi-2 \pi) \\
& =1+\cos (0) \\
& =1+1 \\
& =2
\end{aligned}
$$

4. Suppose $f(x)=x-x^{2}$
(a) A person tries to find $f(x+h)$ by writing

$$
f(x+h)=x-x^{2}+h
$$

This is wrong. What expression (involving $f(x)$) did the person actually write down?

$$
\frac{x-x^{2}+h}{f(x)+h} \text { so } f(x)+h
$$

(b) The person then tries again:

$$
f(x+h)=x+h-x+h^{2}
$$

$x+h$ is two terms. In $f(x)=x-x^{2}$, replacing the
x in $-x^{2}$ with $x+h$ requires parenthesis since two terms arebcing subtracted and takin to a power.
(c) Your turn: Evaluate $f(x+h)$ and fully simplify.

$$
f(x+h)-(x+1)-(x+1)^{2}
$$

special product

$$
\begin{aligned}
& =x+h-\left(x^{2}+2 x h+h^{2}\right) \\
& =x+h-x^{2}-2 x h-h^{2}
\end{aligned}
$$

(d) In general, when you are substituting two or more terms into (a) a variable with a power or (b) that variable being subtracted, what do you need to not forget?
Do not forget to put parenthesis around the
entire expression you are subtracting or taking the power of.
5. Solve the equation for θ. Check your work if necessary.
(a) $\sqrt{2} \sin \theta+1=0$
isolate $\sin \theta$.

$$
\begin{aligned}
\sqrt{2} \sin \theta & =-1 \\
\sin \theta & =-\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=-\frac{\sqrt{2}}{2}
\end{aligned}
$$

(1) in un period.

$\pi+\frac{\pi}{4}=\frac{5 \pi}{4} \quad-\frac{\pi}{4}$ or $\frac{7 \pi}{4}$
(b) $\sin ^{2} \theta=4-2 \cos ^{2} \theta$
(2) account for pricaticity price of $\sin \theta$ is 2π long.

$$
\begin{cases}0=\frac{5 \pi}{4}+2 k \pi \\ 0=\frac{7 \pi}{4}+2 k \pi, & k \in \mathbb{Z}\end{cases}
$$

Convert to one trig function

$$
\begin{aligned}
& \sin ^{2} \theta=4-2\left(1-\sin ^{2} \theta\right) \\
& \sin ^{2} \theta=4-2+2 \sin ^{2} \theta \quad \text { distribution law }
\end{aligned}
$$

$$
0=2-\sin ^{2} \theta
$$

collect like torn

$$
\sqrt{\sin ^{2} \theta}= \pm \sqrt{2}
$$

isolate $\sin ^{2} \theta$

$$
\sin \theta=\sqrt{2}, \quad \sin \theta=-\sqrt{2}
$$

Since $\sqrt{2} \approx 1.414 \mathrm{ad}$ the rouge of sine is $[-1,1]$
no 0 exists for both equations.

$$
N_{0} \text { solution }
$$

6. Prove these identities algebraically:
(a) $\frac{\sin \theta}{\tan \theta}=\cos \theta$

$$
\cos \theta=\text { RHS }
$$

$$
\begin{array}{cc}
\text { (b) } \frac{\cos x}{\sec x}+\frac{\sin x}{\csc x}=1 \\
L H S=\frac{\frac{1}{b}}{c}=1 \cdot \frac{c}{b} \\
\cos x
\end{array}+\frac{\sin x}{\csc x}+\frac{\cos x}{\frac{\cos x}{\cos x}=}+\frac{1}{\frac{1}{\sin x}}=\cos x \cdot \cos x+\sin x \cdot \sin x
$$

(c) $\cos ^{4} x-\sin ^{4} x=\cos 2 x$
pythogomen
identity

$$
=\text { RHS }
$$

Let $A=\cos ^{2} x, B=\sin ^{2} x$
Then

$$
\begin{aligned}
\cos ^{4} x-\sin ^{4} x & \stackrel{\operatorname{Lo} E}{=}\left(\cos ^{2} x\right)^{2}-\left(\sin ^{2} x\right)^{2} \\
& =A^{2}-B^{2} \\
& \equiv(A-B)(A+B) \\
\text { special } & =\left(\cos ^{2} x-\sin ^{2} x\right)\left(\cos ^{2} x+\sin ^{2} x\right)
\end{aligned}
$$

$$
=\cos 2 x
$$

$$
=\text { RHS }
$$

7. Answer the following: is similar.
(a) A triangle $A B C$ has $\angle A=90^{\circ}, \angle B=30^{\circ}$ and $A=25$. Solve the triangle and draw a picture of it.

$$
\begin{aligned}
& \text { For } \angle C \text { : } \\
& \angle A+\angle B+\angle C=180^{\circ} \\
& 90^{\circ}+30^{\circ}+\angle C=180^{\circ} \\
& \angle C=60^{\circ}
\end{aligned}
$$

For c: $\quad \cos \left(30^{\circ}\right)=\frac{c}{25}$

$$
c=25 \cos \left(30^{\circ}\right)
$$

$$
30^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{\pi}{6} \quad=25 \cos \left(\frac{\pi}{6}\right)=25 \cdot \frac{\sqrt{3}}{2}=\frac{25 \sqrt{3}}{2}
$$

For $b: \sin \left(30^{\circ}\right)=\frac{b}{25}$

$$
b=25 \sin \left(\frac{\pi}{6}\right)
$$

$$
=25 \cdot \frac{1}{2}
$$

$$
=\frac{25}{2}
$$

(b) A sequoia tree casts a shadow 100 feet long. Find the height of the tree if the angle of elevation of the sun is 45°.

$$
\begin{aligned}
\tan \left(45^{\circ}\right) & =\frac{h 5^{\circ} \cdot \frac{\pi}{180^{\circ}}}{100} \\
h & =100 \tan \left(\frac{\pi}{4}\right) \\
& =100 \cdot \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} \\
& =100 \cdot 1 \\
& =100 \text { fact }
\end{aligned}
$$

(c) Are $\frac{-\pi}{4}$ rad and 315° coterminal? Show with calculations.

$$
-\frac{\pi}{4} \cdot \frac{185^{\circ}}{\pi}=-45^{\circ}
$$

A full circle is highlighted since $315^{\circ}+45^{\circ}=360^{\circ}$
The terminal sides therefore lie on top of each other
8. Answer the following:
(a) Convert $(\sqrt{8}, \sqrt{8})$ into polar coordinates.

$$
\begin{aligned}
& \uparrow \\
& \times \\
& \times \quad y
\end{aligned}
$$

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{(\sqrt{8})^{2}+(\sqrt{8})^{2}}=\sqrt{8+8}=\sqrt{16}=4
$$

$$
0=\tan ^{-1}(1)=\frac{\pi}{4} \text {, only way }
$$

to point in quadrat).
(b) Convert $r=\frac{1}{1+\sin _{\uparrow} \theta}$ into rectangular form.

$$
r+y=1-\cdots-
$$

(c) Convert $r=6 \cos \theta$ into rectangular form.
both missing r to use formulas

$$
\begin{aligned}
r \cdot r & =6 \cos (\theta) \\
r^{2} & =6 r \cos (\theta) \\
x^{2}+y^{2} & =6 x
\end{aligned}
$$

9. Answer the following:
(a) Write $1+i$ in polar form.
(b) Evaluate $\begin{gathered}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)^{12} \\ a+b i\end{gathered}$

$$
a=\frac{\sqrt{2}}{2}, \quad b=\frac{\sqrt{2}}{2}
$$

$$
r=\sqrt{\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}} \stackrel{L \cdot E}{=} \sqrt{\frac{(\sqrt{2})^{2}}{2^{2}}+\frac{(\sqrt{2})^{2}}{2^{2}}}=\sqrt{\frac{2}{4}+\frac{2}{4}}=\sqrt{\frac{4}{4}}=\sqrt{1}=\square
$$

Same calculation $\because a r$

$$
\text { So } \left.\begin{array}{rl}
\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)^{10} \stackrel{\text { DeMure }}{=}\left(\cos \binom{5}{10 \cdot \frac{\pi}{4}}+i \sin \left(10 \cdot \frac{\pi}{4}\right)\right. \\
2
\end{array}\right)
$$

$$
=\cos \left(\frac{5 \pi}{2}\right)+i \sin \left(\frac{5 \pi}{2}\right)
$$

one full revolution and a quarter

$$
=0+i
$$

$$
=\square
$$

$$
\begin{aligned}
& a+b i, \quad a=1, b=1 \\
& r=\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2} \\
& \tan \theta=\frac{b}{a}=\frac{1}{1}=1 \\
& \tan \left(\frac{\pi}{4}\right)=\frac{\sqrt{2} / 2}{\sqrt{2} / 2}=1 \\
& \text { and } \frac{\pi}{4} \text { points in the right direction. } \\
& \text { So } \\
& \therefore 0=\frac{\pi}{4} \text {. }
\end{aligned}
$$

10. Simplify the following trigonometric expressions:
(a) $\sin 20^{\circ} \cos 40^{\circ}+\cos 20^{\circ} \sin 40^{\circ}$
addition

$$
\begin{aligned}
\text { format } & =\sin \left(60^{\circ}\right) \\
& =\sin \left(\frac{\pi}{3}\right) \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

(b) $\frac{\sin (x+y)-\sqrt{\sin (x-y)}}{\cos (x+y)+\cos (x-y)}=\frac{\sin (x) \cos (y)+\cos (x) \sin (y)-(\sin (x) \cos (y)-\cos (x) \sin (y))}{\cos (x) \cos (y)-\sin (x) \sin (y)+\cos (x) \cos (y)+\sin (x) \sin (y)}$
four applications of
addition/subtraction formula

$$
\text { dist } \frac{\sin (x) \cos (y)+\cos (x) \sin (y)-\sin (x) \cos (y)+\cos (x) \sin (y)}{2 \cos (x) \cos (y)}
$$

$$
=\frac{2 \cdot \cos (x) \cdot \sin (y)}{2 \cdot \cos (x) \cdot \cos (y)}
$$

$$
\operatorname{frachaw}_{5}^{\text {law }}=\frac{\sin (y)}{\cos (y)}
$$

$$
=\tan (y)
$$

11. Here is a pair of parametric equations

$$
x=2 t \quad y=t+2
$$

(a) Sketch the curve represented by the equations.

(b) Find a rectangular coordinate equation for the curve by eliminating the parameter.

$$
\begin{gathered}
y=t+2 \\
t= \\
t-2 \\
\quad \downarrow \text { substitute } \\
x=2(y-2)
\end{gathered}
$$

12. Answer the following. Do not leave negative exponents.
(a) Simplify

$$
\frac{1}{x-1}+\frac{1}{x+1}-\frac{2}{x}
$$

$$
\operatorname{LCP}=\frac{x(x+1)}{x(x+1)} \frac{1}{x-1}+\frac{x(x-1)}{x(x-1)} \frac{1}{x+1}-\frac{(x-1)(x+1)}{(x-1)(x+1)} \frac{2}{x}
$$

dirac law \#1, $\frac{x^{2}+x}{A^{2}-B^{2}}+\frac{x^{2}-x}{x(x+1)(x-1)}-\frac{2\left(x^{2}-1\right)}{x(x+1)(x-1)}$

(b) Simplify

$$
\begin{aligned}
& =x^{2} y\left(\frac{x}{x+1}\right)^{x^{2} y\left(\frac{x+1}{y}\right)^{-2}\left(\sqrt{\frac{x}{y}}\right)^{4}}\left(\left(\frac{x}{y}\right)^{\frac{1}{2}}\right)^{4} \\
& \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \\
& \left(a^{n}\right)^{m}=a^{n m} x^{2} y \frac{y^{2}}{(x+1)^{2}}\left(\frac{x}{y}\right)^{2} \\
& \begin{array}{l}
\text { frug } \underset{\text { lan }}{=} \frac{x^{2} y \cdot y}{(x+1)^{2}} \cdot \frac{x^{2}}{y^{2}} \\
\left(\frac{a}{b}\right)^{n}=\frac{a^{a}}{b^{a}}
\end{array} \\
& \operatorname{fan}_{\operatorname{lan} 1,5}^{=} \frac{x^{2} x^{2} y}{(x+1)^{2}} \\
& a^{n} a^{m}=a^{n+m} \frac{x^{4} y}{(x+1)^{2}}
\end{aligned}
$$

(c) If

$$
f(x)=x^{2}+1 \quad g(x)=2 x^{3} \quad h(x)=2 x-1 \quad k(x)=6 x^{2}
$$

fully expand and simplify the following expressions:
i. $f(x) g(x)+h(x) k(x)$

$$
=\left(x^{2}+1\right) 2 x^{3}+(2 x-1) 6 x^{2}
$$

dist

$$
\begin{aligned}
& \text { list } 2 x^{5}+2 x^{3}+12 x^{3}-6 x^{2} \\
& =2 x^{5}+14 x^{3}-6 x^{2}
\end{aligned}
$$

ii. $\frac{g(x) f(x)-k(x) h(x)}{[k(x)]^{2}}=\frac{2 x^{3}\left(x^{2}+1\right)-6 x^{2}(2 x-1)}{\left(6 x^{2}\right)^{2}}$

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { distlav, } \\
(a \cdot b)^{n}=a^{n} b^{n} \\
\left(a^{n}\right)^{n}=a^{n m} \\
=\frac{\left.2 x^{5}+2 x^{2}\right)^{2}}{36 x^{4}}
\end{array}
\end{aligned}
$$

